Some Safari browsers are failing to connect secured pages Try the following: - refresh the page a few time to see if the page loads, if this fails please update the browser or try to browse the page in Firefox or Chrome. - Read more.
Minispares.com uses cookies to give a better browsing experience. Read more 

Articles search results for seal

Showing 1 to 20 of 128 articles
prev of  next

14A9010 BONNET SEAL

This is the original thicker bonnet seal that was glued on the bonnet scuttle panel drainage channel.

Early cars had a full width seal 38.5”whereas later cars used 36.5” leaving some of the wing drainage channel clear. Trim the ends to your requirement.

Historical Article - October 1993 - SEAL of approval

SEAL of Approval In Mini Tech News November 1992, we ran a piece by Tom Seal on the Cooper'S' he was building for Timo Makinen. For reasons which are frankly unprintable, the story was neuer completed, so I decided to pay Tom a visit to find out what was going on. It turned out to be rather a lot.

SUSPENSION - Terminology

Glossary of terms used in the suspension on the mini. The Mini has consistently more than proven its capability in competition with very limited and cost-effective modifications based on the standard equipment fitted. Having first ensured the bodyshell (in reality little more than a complex bracket to hold suspension and driver securely in place) is well sorted out by removing all cruddy or rotten metalwork and into something like straight, square and strong we, maximising suspension stability and geometry pays dividends in the enjoyment that is driving a Mini. Understanding what the individual ingredients are helps in pursuing what you want from the experience. Smooth Mover Good, reliable, and consistent handling is dependent on a number of factors. At this stage, we’re concerned with clapped out or badly adjusted suspension components. Stiff, seized, partially seized or slack, sloppy, worn out suspension components will cause inconsistent, wayward, confusing and – more important

SHOCK ABSORBERS

Technical lowdown on shock absorbers,what to look for and what to buy Having introduced the fairly unknown Kayaba (KYB) range to the mini market in 1997 I am still amazed how gullible people are when buying cheap dampers. I have tried every type popular type available in the last 35 years, Armstrong including their adjustables, Girling, lockheed, Koni, Spax., Avo, Bilstein,Monroe,Boge,Gabriel and GMax The best to date were probably the very expensive special design Koni adjustables that we had built for the Monte Carlo rally. I also used the spare set on my 8 port car. You get what you pay for? For a non adjustable, Bilsteins rate highly although like the Koni specials are expensive, but you get what you pay for. The essence of a quality damper is to upgrade performance by using more sophisticated higher quality component build in the valving, piston, rod and seals etc along with a performance upgrade to improve the cars road holding.

GEARBOX - Limited Slip Diffs; necessary parts for installation.

Fitting an LSD isn't as simple as replacing the diff cage unit. In all cases a certain degree of diff housing modifications is needed - material needing to be ground/filed away to provide clearance for larger diff housing cases and crown wheel bolts. Although it has to be said the Quaife diff is supposed to fit without these mods. I've never found that. The design and manufacture of the LSD to facilitate any other function other than that of a standard 'open' diff assembly precludes use of standard CWPs. So one suitable for an LSD is needed. Naturally Mini Spares/Mania supply these in an extensive range of FD ratios. The output shafts are also different. A much thicker spline type is used within the LSD assembly. Consequently a suitable pair of LSD-compatible output shafts are needed. Some folk still insist on running the archaic, power consuming Hardy-Spicer type driveshaft to diff joints - although this is the only real option for rallying unless a change in driveshaft assembly

Primary Gear - Bush Replacement

With the cost of new primary gears spiralling ever upwards, and the availability of good, serviceable used ones, fitting new bushes to existing gears is becoming a more common solution. For some reasons for bush failures and rectification to stop it re-occurring, see article Primary gear - Bush problems. Since there is no useful information given in any of the workshop or DIY manuals on this subject, following is my approach to dealing with the issue. The first thing to get to grips with is which bush is which. This has added an element of confusion to many conversations I have had with folks on this subject, so - the FRONT bush is the one nearest the engine block, the REAR bush is the top-hat one nearest the flywheel. This is because the front of the engine is actually the radiator end - quoted in 'in-line' engine-speak. The REAR bush is the same on all primary gears - be they for small or large bore engines. The FRONT bush is different for each though; the small-bore one is smaller

GEARBOX - Up-Rating Drop Gears

The standard drop gears are fine for practically all road use - almost irrespective of power output. part numbers: DAM9373, C-STR123, C-STR124, C-STR30, C-STR30A, C-STR30T, C-STR30TA, C-STR230, C-STR240, C-STR250 Terminology - Drop Gears - Transfer gears (primary, idler and input gears) Large-bore - Refers to anything based on a 1275-type unit Small-bore - Refers to anything based on 850/998/1098 units Despite what many folk believe - they are more than strong enough, and will perform perfectly well if correctly set up. That means getting the idler and primary gear end floats right, and using new bearings for the idler gear at each re-build. Simply following the methods outlined in the relevant workshop manuals will achieve these simple goals. There are two problems with standard drop gears - the main one is the helical cut of the teeth, the other a very limited selection of ratios. The helical-cut teeth are essentially power absorbing - both from increased metal-to-metal c

Gearbox - Up-rating diffs and FDs

There’s a good selection of straight-cut final FDs available. Examine the FD table, and using information from

'Gearbox - Final dives, standard' and 'Gearbox - Formulae for car speed, etc.'

you can assess which would best suit your usage. Bear in mind that they’re noisy, make sure you select one that’ll fit your diff unit, and also consider that using drop gears will allow fine-tuning of the ratio where necessary. See

'Gearbox - Up-rating drop gears'

Gearbox - Up-rating diffs, FDs and ancillaries.

part numbers: C-BTA166, C-BTA167, DAM6624, BTA101, 2A7062, DAM5071, DAM6027, RPS1418, C-AJJ3385, C-22A1731, ...Read more

Primary Gear – Bush Problems

Although not of immediate interest to many road-runners/street-burners, mainly accorded to the racing scene, it seems to be a perplexing problem to a very large number of folk around the world, and has burned up plenty of telephone time.

part numbers: 13H2934, LUF10005, CE12, 22G109, DAM8889, DAM8887

With the cost of new primary gears spiralling ever upwards, and the availability of good, serviceable used ones, fitting new bushes to existing gears is becoming a more common solution. For some reasons for bush failures and rectification to stop it re-occurring, see article 'Primary gear - Bush problems'. Since there is no useful information given in any of the workshop or DIY manuals on this subject, following is my approach to dealing with the issue.

The first thing to get to grips with is which bush ...

Brakes - Pipe End Flares

One day I'm going to have to try and assess just how it is that every now and again I get a 'run' on folks asking me about a specific problem. These problems exist all year round, year in, year out. And said problems crop up throughout the year. But - every now and then there's a blood-rush on a certain issue. Just recently that issue has been brake pipe ends. The bit that seals the pipe off against it's relevant fitting. There are two types of end - male and female. The male end is convex in shape, the female concave. The male end is used where a male pipe union (nut) is used on the brake pipe - that's a nut with an external thread - that will be screwed into a female fitting such as found in a wheel cylinder or master cylinder. The female end is used where a female pipe union (nut) is used on the brake pipe - a nut with an internal thread - and will be mated to a male fitting such as found on rear flexible brake pipes. Under no circumstances should you mix the too up as the brake p

Brakes - Silicone brake Fluid

To use or not to use - that is the question! BRAKES - Silicone brake fluid, to use or not to use - that is the question! Over more recent years I've had affair number of discussions on the use of silicone brake fluid as opposed to the more common type. I have to say some folk are vehemence in their belief that this stuff is 'the answer' to all kinds of brake maladies. Some time ago I contacted the two major brake specialists in this country (UK) to see what they had to say. Their reactions was as vehemence as those believers above. For what it's worth, I thought I'd spread the word according to the manufacturers - which happens to be similar to my limited experience with this 'liquid savior'. Some has heralded silicone-based brake fluid as being the last word in brake fluid, yet also brings a look of horror onto the faces of some. The classic car folk swear by it, particularly for vehicles that are not used much where brake seal failure can be experienced, and because it does not

Cylinder head - What can easily be achieved

During a discourse with the editorial staff at Mini Mag, it was decided the build feature presented an ideal opportunity to demonstrate just exactly what such an engine build is capable of in days where it's generally believed you have to have an all-singing, all-dancing 1380cc engine to have an enjoyable road burner - leaving those with very limited budgets a little depressed. During a discourse with the editorial staff at Mini Mag, it was decided the build feature presented an ideal opportunity to demonstrate just exactly what such an engine build is capable of in days where it's generally believed you have to have an all-singing, all-dancing 1380cc engine to have an enjoyable road burner - leaving those with very limited budgets a little depressed. So the idea was to finish the engine off using a relatively 'mild' specification to maximise drivability. The camshaft used was the fantastically versatile Swiftune Racing SW5 profile that provides drive from nowhere up to 7,000rpm - d

Cylinder Head - Unleaded Fuel Use

The specter of 'unleaded fuel only' - instigated in UK on January 1st 1999 and seemingly from decades ago across the rest of the world - seems to be forcing more and more folk into frightened, panic orientated action. And Mini owners are featuring heavily in this. See bottom for useful part numbers. The situation not at all being helped by all sorts of conflicting information from 'leaned' sources, such as lead levels in humans has declined greatly since 1935 - despite the rapidly expanding ownership of petrol-burning vehicles. And benzene and toluene used in unleaded fuels are cancerous. Still, the powers that be are relentlessly forcing through the 'no heavy metals in fuel' bills, not being at all put off by such trivia. Not surprising bearing in mind the complete debacle on the catalytic converter front - the type decided on for world wide and universal use was developed and tested in California!

Cylinder Head - Unleaded Fuel Use

The specter of 'unleaded fuel only' - instigated in UK on January 1st 1999 and seemingly from decades ago across the rest of the world - seems to be forcing more and more folk into frightened, panic orientated action. And Mini owners are featuring heavily in this. See bottom for useful part numbers. The situation not at all being helped by all sorts of conflicting information from 'leaned' sources, such as lead levels in humans has declined greatly since 1935 - despite the rapidly expanding ownership of petrol-burning vehicles. And benzene and toluene used in unleaded fuels are cancerous. Still, the powers that be are relentlessly forcing through the 'no heavy metals in fuel' bills, not being at all put off by such trivia. Not surprising bearing in mind the complete debacle on the catalytic converter front - the type decided on for world wide and universal use was developed and tested in California!

Valve Guides - Materials and Useage

Material choices for guides are down to two distinct types - cast iron and bronze. Yes, cast iron. NOT steel as described in many adverts and by vendors. Never have been, never will be. These are as fitted to the various A-series cylinder heads as standard in all applications. Cast iron is used because it is a very dissimilar metal from any used in valve manufacture - important to eliminate galling that causes seizure of the valves in the guides - is softer, yet resilient enough to wear well. Bronze, on the other hand, is a very general description as there are a variety of 'bronzes' used by various folk. In days gone by, the bronze base type used was 'PB1' (also known as 'Navy Bronze') - a phosphor-bronze alloy that was very orange in colour, and very soft, used primarily in race engines. Unfortunately they wore out very quickly. Silicone-brass content bronze is probably the most popular now - often with a high aluminium or manganese content - is very yellow/gold in colour.

C-AEA527 Dual Valve Springs Fittting Instructions

This valve spring set has been developed to fit standard sized top caps, and cope with racing rpm, savage cam lobe opening rates and high valve lifts up to 0.520”. Most cylinder heads when modified for racing culminate in a fitted valve spring height of around 1.420” to 1.440”.

C-AEA527 DUAL VALVE SPRINGS FITTING INSTRUCTIONS

See bottom for useful part numbers.

However where possible, it is always advantageous to correct and match the valve spring heights (measured from the spring seat in the head to the underside of the spring retainer cap), as these will vary particularly where new valve seats are cut and the standard valve spring seats are left – some by as much as 0.050”!

MSE6 - POST 1992 Unleaded Stag

Modified to give maximum performance gain for cost. Combustion chambers, inlet and exhaust ports extensively re-worked. Stone-ground finish in ports promotes ultimate fuel atomisation. Three-angle valve seats in head. Super-quality MG Metro valves modified to increase airflow. MSE6 - POST 1992 unleaded stage 2 (Road Rocket) large-bore head Part No Applications: MSE6, TAM1059, TAM1061, TAM2069, 12G1963, 12G1015, ADU4905 Inlet Valves: 35.6mm(1.401") dia. Original equipment type P/No. TAM1059 Exhaust Valves: 29.2mm(1.150") dia. Original equipment type P/No. TAM1061 Exhaust seats: Latest type Beryllium-based for lead-free fuel P/No. TAM2069 Valve Guides: AE Hepolite cast iron P/No. 12G1963 Valve Springs: Nominal 140lb. Max actual valve lift 0.400" P/No. 12G1015 Stem Seals : Latest 'top-hat' design with tensioner springs (inlets) P/No. ADU4905 Chamber Volume: Nominal 20cc Combustion chamber volume used to give slight static compression ratio increase over

MSE6 - POST 1992 Unleaded Stag

Modified to give maximum performance gain for cost. Combustion chambers, inlet and exhaust ports extensively re-worked. Stone-ground finish in ports promotes ultimate fuel atomisation. Three-angle valve seats in head. Super-quality MG Metro valves modified to increase airflow. MSE6 - POST 1992 unleaded stage 2 (Road Rocket) large-bore head Part No Applications: MSE6, TAM1059, TAM1061, TAM2069, 12G1963, 12G1015, ADU4905 Inlet Valves: 35.6mm(1.401") dia. Original equipment type P/No. TAM1059 Exhaust Valves: 29.2mm(1.150") dia. Original equipment type P/No. TAM1061 Exhaust seats: Latest type Beryllium-based for lead-free fuel P/No. TAM2069 Valve Guides: AE Hepolite cast iron P/No. 12G1963 Valve Springs: Nominal 140lb. Max actual valve lift 0.400" P/No. 12G1015 Stem Seals : Latest 'top-hat' design with tensioner springs (inlets) P/No. ADU4905 Chamber Volume: Nominal 20cc Combustion chamber volume used to give slight static compression ratio increase over

MSE4 - Post 1992

Modified to give maximum performance gain for cost. Combustion chambers, inlet and exhaust ports extensively re-worked. Stone-ground finish in ports promotes ultimate fuel atomisation. MSE4 - POST 1992 unleaded stage 2 (Road Rocket) large-bore head Part No Applications: MSE4, C-AEG544, C-AEG106, TAM2069, C-AJJ4037, C-AEA526, ADU4905 Inlet Valves: 35.6mm(1.401") dia. Tuftrided EN214N s/steel P/No. C-AEG544 Exhaust Valves: 29.5mm(1.161") dia. Tuftrided EN214N s/steel P/No. C-AEG106 Exhaust seats: Latest type Beryllium-based for lead-free fuel P/No. TAM2069 Valve Guides: Magnesium bronze P/No. C-AEA526 Valve Springs: Nominal 180lb. Max actually valve lift 0.500" P/No. C-AJJ4037 Stem Seals: Latest 'top-hat' design with tensioner springs (inlets) P/No. ADU4905 Chamber Volume: Nominal 20cc Three-angle valve seats in head. Cooper S size valves with current maximum flow profiles and Tuftrided for durability/longevity when used with unleaded fuel (hence 'black' finish).

MSE4 - Post 1992

Modified to give maximum performance gain for cost. Combustion chambers, inlet and exhaust ports extensively re-worked. Stone-ground finish in ports promotes ultimate fuel atomisation. MSE4 - POST 1992 unleaded stage 2 (Road Rocket) large-bore head Part No Applications: MSE4, C-AEG544, C-AEG106, TAM2069, C-AJJ4037, C-AEA526, ADU4905 Inlet Valves: 35.6mm(1.401") dia. Tuftrided EN214N s/steel P/No. C-AEG544 Exhaust Valves: 29.5mm(1.161") dia. Tuftrided EN214N s/steel P/No. C-AEG106 Exhaust seats: Latest type Beryllium-based for lead-free fuel P/No. TAM2069 Valve Guides: Magnesium bronze P/No. C-AEA526 Valve Springs: Nominal 180lb. Max actually valve lift 0.500" P/No. C-AJJ4037 Stem Seals: Latest 'top-hat' design with tensioner springs (inlets) P/No. ADU4905 Chamber Volume: Nominal 20cc Three-angle valve seats in head. Cooper S size valves with current maximum flow profiles and Tuftrided for durability/longevity when used with unleaded fuel (hence 'black' finish).
prev of  next